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Part 1: Diagrams and their morphisms




Diagrams are among the most fundamental notions of category theory.
Recall. A diagram in a category C is a functor D: J— C, where J is a small category.

Two common classes of diagrams:
e Free diagram: diagram shape J is freely generated by a graph

e Commutative diagram: free diagram where images of any two paths with same
source/target are equal in C

Example. A spanin C
f g
Te—w—y
is a free diagram D:J— C of shape J:={1+0— 2} where D(0)=w and

D1)=z, D2)=y
DO0—1)=f, D(0—2)

g.



Categories of diagrams: an incomplete history

Everyone knows and loves diagrams, but it is less appreciated that diagrams in C have
a natural notion of morphism and so form a category (even a 2-category).

Two recent papers:
e Peschke & Tholen: “Diagrams, fibrations, and the decomposition of colimits” [PT20]
e Perrone & Tholen: “Kan extensions are partial colimits” [PT21]
Considerable work in the 70s by René Guitart, mainly in French [Gui73, Gui74, GVdB77].
But goes back to the earliest work on category theory:
e Kock, PhD thesis: Limit monads in categories [Koc67]

e Eilenberg & Mac Lane: “General theory of natural equivalences” [EM45]



Categories of diagrams: definitions

There are several notions of morphism of diagrams, hence several diagram categories.

Definition. The category Diag(C) has

e as objects, diagrams in C
e as morphisms from D:J— C to D": J'— C, a functor R: J— J' together with a

natural transformation p: J= J o R.
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Part 2: Diagrams in functorial data migration

In collaboration with David Spivak
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Categorical databases

The point of departure for the categorical databases story is that relational databases
can be elegantly modeled by the basic concepts of category theory:

e database schema is a small category C, usually finitely presented
e database instance is a copresheaf on C, or C-set, namely a functor X: C — Set

e homomorphism of databases X, Y is a natural transformation X =Y

Example. (Schema for graphs)

O@present SchGraph(FreeSchema) begin

V::0b
E::0Db o STC v
src: :Hom(E, V) tgt ‘

tgt::Hom(E, V)
end



Functorial data migration

The categorical viewpoint suggests the idea of functorial data migration [Spil2]:
Functors between schemas induce functors between databases.

The simplest form of data migration is pullback data migration: given functor F': D — C,
precomposition with F' defines a functor Ap:= F™*: C-Set — D-Set.

Useful for defining forgetful functors and other “projections.”



Functorial data migration

Example. (Underlying graph of port graph)

E ¢V
tgt
F = Omigration SchGraph SchPortGraph begin Fé
V => Box
E => Wire
src => src - box_out OutPort

(0).¢

tgt => tgt - box_in V wut
end )
Wire
\ /Oxm

InPort



Covariant data migration

Pullback data migrations always have left and right adjoints: given F': C — D, have

XF
C-Set ¢ AJ_F D-Set

1
IIr

\
/4
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E.g., left pushforward migrations useful for free constructions.
Challenges:

e Can be very difficult to compute [SW15]

e Resulting databases can be infinite

e Difficult even for experienced users to predict the results
Instead, we consider generalizing pullback data migration:

e Less automated, but more flexible, more explicit, and easier to implement



Contravariant data migration with queries

Motivation. Since Cat is cartesian closed,

C-Set — D-Set s D — SetC-Set

tC-5¢t is the category of “all possible queries on C-sets.”

(ignoring size issues) where Se
Problem. It's too big in every sense.

Solution. Restrict to a tractable class of queries.

Let us start with the representable queries, of the form X — C-Set((Q), X) for some ().
e In database jargon, these are the conjunctive queries

e (-set () is the frozen instance corresponding to the query

Problem. Finitely presentable queries can have infinite representing objects ().

Solution. Replace (C-Set)°P with more syntactical category: a category of diagrams!



Diagrams and limits

Original motivation for diagram categories is exposing the functorality of limits [EM45].

Theorem. When S is a complete category, taking limits gives a functor
: : D :
lim: Diag®P(S) — S, (J—>S)|—>hmD.
Dually, when S is a cocomplete category, taking colimits gives a functor

colim: Diag(S) — S, (JLS) — colim D.

Operationally: define j'th leg of cone over D’ as composite 7, - p;/, where j:= Rj’.
i Pj




Conjunctive data migration

Definition. A conjunctive data migration C-Set — D-Set is a data migration defined by
a functor F': D — Diag®P(C).

Explicitly:

e Every object in D assigned a diagram in C, interpreted as a limit/conjunctive query

e Every morphism in D assigned a morphism of diagrams in C

Migration is evaluated by computing limits in Set: given X: C — Set, return

Plag (X Diag®P(Set) M Get,

D - Diag®?(C)



Conjunctive data migration

Example. (Graph with edges the paths of length 2)

F = Omigration SchGraph SchGraph begin
V=>YV
E => Q@join begin
v::V; el::E; e2::E
tgt(el) == v
src(e2) == v
end

src => el - src
tgt => e2 - tgt
end

SIrC

tgt
In this query, object I is assigned to the diagram F A Vg E.




The hierarchy of queries

Dualizing to include colimits (“gluing queries”), we get the hierarchy of queries:

Query class Category

Trivial queries C

Conjunctive queries Diag®P(C)
Disjoint unions Bun(C)

Duc (“disjoint union of conjunctive”) queries Bun(Diag®?(C))
Gluing queries Diag(C)

Gluc (“gluings of conjunctive”) queries Diag(Diag®P(())

Bun(C) (“bundles in C") is full subcategory of Diag(C) spanned by discrete diagrams.

Remark. (Coercion) In practice, we implicitly convert between query classes:
C

Diag(C) Diag°?(C)

\Diag(né) nDiay

Diag(Diag®?(Q))



Duc data migration

Example. (Graph with edges the paths of length <2)

F = Omigration SchGraph SchGraph begin
V=1V
E => Q@cases begin
v =>1V
e => E
path => Q@join begin
v::V; el::E; e2::E
tgt(el) == v
src(e2) == v
end
end
src => begin
e => src
path => el-src
end

tgt => (e => tgt; path => e2-tgt) # Abbreviated for space.
end



Gluing data migration

Example. (Free symmetric reflexive graph on a reflexive graph)

F = Omigration SchSymmetricReflexiveGraph SchReflexiveGraph begin
=>V
=> Q@glue begin
fwd::E; rev::E
v::V
(fwd_refl: v — fwd)::refl
(rev_refl: v — rev)::refl
end
src => (fwd => src; rev => tgt)
tgt => (fwd => tgt; rev => src)
refl => v
inv => begin
fwd => rev; rev => fwd; v => v;
fwd_refl => rev_refl; rev_refl => fwd_refl
end
end

Ma< |



Conclusion: diagrams in data migration

Advantages. This form of data migration offers two major advantages over SQL queries:
1. Results are general databases, not just tables

2. Queries can include general colimits, not just disjoint unions (and unions actually
work properly)

Summary

e Diagrams are a combinatorial syntax for queries

e Morphisms of diagrams define foreign key relations between queries

e Working prototype available now in Catlab.jl, with blog post forthcoming
Future work

e Composing queries using the monad of diagrams [Koc67, PT21]

e Flexible transformation of data attributes, using arbitrary Julia functions

e Integration with recent work on grouping and aggregation [Spi21]
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Project overview

Objective. Develop compositional methods and software to reduce the very substantial
engineering effort needed to build physics simulators (PDE solvers), including

e multiple interacting physics (“multiphysics”)
e complex geometric domains
Elements.

1. Category-theoretic: diagrammatic formalism for specifying and composing physical
theories, loosely inspired by Tonti diagrams

2. Differential-geometric: differential operators and their discretizations
a. specifically, the discrete exterior caluclus (DEC) [Hir03, DHLMO5]
b. implemented in two dimensions in CombinatorialSpaces. |l
3. Numerical: PDE solvers based on these components (software forthcoming)

This talk will focus on the category-theoretic aspects.



What is a Tonti diagram?

e Tonti diagrams’ are a loose family of informal diagrams used to depict the quantities
and differential equations in physical theories

e Promoted and popularized by Enzo Tonti but variations abound among other authors
(Bossavit, Deschamps, Oden and Reddy, ...)

f=Ff(r)
r - f
— -

d ¢ d|mdr d
dt T odt dt dt
4 — P
p=mv

Figure. Tonti diagram for Newton's second law [LO91]



Maxwell’s house: the origin of Tonti diagrams
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Figure. Tonti diagram for electromagnetism [Ton13]



A=A+¢dt

|

F=B+EAdt

Maxwell’s house: the origin of Tonti diagrams
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Figure. Tonti diagram for electromagnetism [LO91]



Maxwell’s house: the origin of Tonti diagrams
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Figure. Maxwell's house according to Bossavit [Bos98]



Maxwell’s house: the origin of Tonti diagrams

TABLE III
ELECTROMAGNETICS FLOW DIAGRAM

Figure. Electromagnetics diagram according to Deschamps [Des81]



Tonti diagrams in the wild

source variables [FL U 6]

configuration variables Viscous fluid
space: primal complex C . R space: dual complex
time: primal complex ariesian notation time: dual complex
intervals instants Navier-Stokes equations instants intervals
1[I, P] 1T, V]
fi

/)

dpi + Vi(pit) - Vit = f;

constitutive equation PR
a 1T, V]

1[T, P

mat h > P’,

v-J Pi = gnp?

3L L] L\

constitutive equations

(A+2p) 66

/ (D yeeeeen] 2Dy e
'

time even T
2

SO 7% 4
3(T, L] 3 (W) " .
Lh (Stokes)
k

v velocity Dy strain rate tensor T Symmetric stress tensor p mechanical pressure = —tr(or)/3

f'hx velocity gradient & volume dilatation rate my couple stress tensor [fi volume force density

Wi spin tensor 6 (L) =1tr(D)= I_: =V Tix Stress tensor P momentum density - -
‘ . . T ,, T timeodd 1

D'y strain rate deviator o’ stress deviator Tik = G T,

"'ri = dih Lh(

Figure. Tonti diagram for Navier-Stokes equation [Ton13]



But what is a Tonti diagram?

Question. Are Tonti diagrams “just” category-theoretic diagrams?

Answer. Almost: they are diagram lifting problems.

Background. Take as our setting a category C, having the interpretation:

e objects of C = spaces of physical quantities (scalar fields, vector fields, forms)
e morphisms of C = differential operators

For present purposes, we leave open the specifics.

e Minimalist choice is C = Vectr

e More structure is present, e.g., in smooth case, objects are sheaves of vector spaces
on Riemannian manifolds



Diagrams of generalized elements

We are going to consider diagrams in a category of generalized elements of C.

Fix an object U € C. (When C = Vectp, take U =1R.)

Notation. Write E1(C) :=U / C for the coslice category having

e as objects, morphisms U X (written “z: X") in C

e as morphisms (z: X)— (z": X'), f: X — X’ in C forming a commuting triangle

U
X / . X/

Idea.

diagram in C «~  system of equations
diagram in E1 C «~ solution to a system of equations



Diagram lifting problems

Definition. The lifting problem associated with a diagram D:J— C is to find a diagram
D:J— ElC such that mo D =D, where m =cod: E1 C — C is the canonical projection.

E1(C)

e

D
e
7

'

Equivalently, the lifting problem is to find a cone over D with apex U.

Remark. So, the limit of D, if it exists, is a “universal solution” of a class of lifting
problems, where U ranges over C. In general:

e Limits are about finding solutions to equations

e Colimits are about imposing solutions



Example: diffusion equation

Phrased in exterior calculus, the diffusion equation is the lifting problem given by

—1

C:Q?LC’:Q?#CM:Q?

| a

dC : Q) > ¢ Q2

kx
where
e we have fixed a three-dimensional Riemannian manifold M
o QF (resp. ) are the time-dependent straight (resp. twisted) smooth k-forms on M
o (C: OV is the concentration of the diffusing substance

o ¢:Q7 is the negative diffusion flux

e k>0 is the diffusivity, a constant

Warning. The diagrams in C or El C are free diagrams, and they do not commute!



Morphisms of diagrams

In view of the connection with limits, the correct category of diagrams is Diag®P(C),
where the morphisms look like:

J < i J
P
C

Two important uses for the morphisms:

1. Express boundary conditions and formalize boundary value problems as extension-
lifting problems

2. Formalize relationships between different (presentations of) physical theories



Boundary conditions as diagram morphisms

Boundary conditions associated with a system D € Diag®P(C) can be represented by a
morphism D — Dy.

Example. (Diffusion equation with Dirichlet conditions)

Co : QV(M) Cy : Qs (OM)

0 resgn T
reso ! -7

C QM) —2 5 &M < dp: Q3(M)

| T

dC : QH(M) > ¢ Q2(M)

kx

where the shape of Dy is Jy:={e, e} and

o Cp:Q(M) are initial conditions (C' at time ¢ =0)
o (% (OM) are boundary conditions (C' on boundary of M)



BVPs as extension-lifting problems

Formally, a boundary value problem is a diagram extension-lifting problem.

Definition. Let (R, p): D — Dg be a morphism of diagrams in C and Dy be a lift of Dy

to E1 C. The extension-lifting problem with data Dy is to find a morphism of diagrams
(R, p): D— Dy in El C such that Diag®(7)(R, p) = (R, p).

e Lifting D to D through 7 = solving the equations

e Extending D to D through R: Jy— J (up to p) = satisfying the boundary conditions



Transporting lifts along diagram morphisms

Proposition. Let 7: E— C be a functor. Whenever 7 is a discrete opfibration, so is the
functor Diag®P(m): Diag®P(E) — Diag®P(C) given by post-composition with 7.

Since m=cod: El C — C is a discrete obfibration, this means that:
e a diagram morphism D — D’ transport lifts of D to lifts of D’

e in particular, given a BVP D — D, the boundary values of a possible solution D
can be computed, as one would expect!



Example: a variation on the diffusion equation

A strict morphism of diagrams connects two different presentations of the equation:

—1

C:00 —2 s O Q) 4y O3

| T

dC : Q} ™ > b Q2
Ot Co.

C: QY O QY
kA ’

Here A :=x"1dxd is the Laplace-Beltrami operator.



Extensions and applications

Extensions. Many extensions to formalism that | have not discussed:

e Weak equivalences of diagrams based on initial functors (cf. Street & Walters [SW73)])
e Composition of free diagrams using structured cospans [Fonl5, BC20]

e Diagrams involving cartesian products

e Diagrams involving monoidal products, e.g., tensor product in Vectr

With the latter upgrades, we can express the major equations of mathematical physics,
such as Maxwell’s equations and the Navier-Stokes equations.

Applications. | have also not discussed our computational pipeline:
equations (diagrams) — computation graphs (wiring diagrams) — simulations (Julia)

For fun, I'll show a simulation anyway: evolution of electromagnetic fields (Maxwell's
equations) with fully reflecting boundary.
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